发布日期:2023-02-22
本条信息已被查看了15150 次
|
||
罗国芝 教授 |
罗国芝,女,1974年4月,湖北枣阳人,教授,博士生导师,现为上海市水产学会会员、水产学会资深会员、第十一届渔业装备专业委员会、《Aquacultural Engineering》副主编。主要研究方向: 水产养殖用水重复利用和循环水养殖系统与工程。第一作者或通讯作者在《Bioresource Technology》、《Reviews in Aquaculture》、《Aquaculture》等期刊上发表SCI 收录论文36余篇,获授权国家发明专利30余项,首席专家制定行业编制一项。主持国家自然科学基金等10余项科研项目。获上海市科学技术一等奖(循环水工厂化淡水鱼类养殖系统关键技术研究与开发)、“最具技术交易潜力奖”一等奖(高密度循环水工厂化水产养殖系统)、“金桥奖一等奖”(循环水工厂化养殖系统工艺设计与应用研究奖)和国家级一流课程等。
工科研与学术工作经历(博士后工作经历除外):
2017-01 至 今, 新葡萄8883官网AMG, 新葡萄8883官网AMG, 教授
2017-01 至 2018-01, 美国内布拉斯加大学奥马哈校区, 生物系, 访问学者
2005-09 至 2016-12, 上海水产大学, 渔业学院, 副教授
2003-01 至 2005-08, 上海水产大学, 渔业学院, 讲师
2000-07 至 2002-12, 上海水产大学, 渔业学院, 助教
教育背景:
2003-2007,环境科学,工学博士学位
1997-2000,水产养殖,农学硕士学位
1993-1997,水生生物,理学学士学位
教学工作情况:
本科生课程:《养殖水化学》,《养殖水化学实验》、《Aquaculture Water Chemistry》,《Aquaculture Engineering》
硕/博生课程:《循环水工厂化养殖系统》,《养殖水环境监测与调控》,《Recirculating Aquaculture Systems》
主要研究方向:
水产养殖用水重复利用;循环水养殖系统;水产养殖规划和环境管理。
主持和参与的科教项目:
[1] 国家自然科学基金项目:生物絮团养殖系统中无机氮代谢通路的环境响应机制和养殖效应研究,主持。
[2] 上海市科委地方院校能力提升项目:凡纳滨对虾陆基循环水高效养殖工艺研究与示范,主持。
[3] 上海市科委地方院校能力建设项目:浅水跑道式循环淡水养殖系统优化与效果示范,主持。
[4] 国家自然科学基金项目:水产养殖系统中生物絮凝介导氨氮转化关键因素的研究,主持。
[5] 上海市科委工程中心能力提升项目:上海水产养殖工程技术研究中心,参加。
[6] 国家科技支撑计划项目子课题:鳗鱼工厂化高效养殖技术集成研究与系统构建,参加。
[7] 上海市教委创新项目:利用可生物降解聚合物作碳源和载体进行水产养殖用水异养反硝化机理的初步研究,主持。
[8] 公益性行业(农业)科研专项子课题:养殖节能装备关键技术研究与应用,参加。
第一或者通讯作者发表的SCI收录论文情况:
[1] He X., Abakari A., Tan H.X., LIU W.C., Luo G.Z.*, 2023. Effects of different probiotics (Bacillus subtilis) addition strategies on a culture of Litopenaeus vannamei in biofloc technology (BFT) aquaculture system. Aquaculture, 566: 739216.
[2] Zhang H.X., Sun T., Tan H.X., Lv X.L., Liu W.C., Luo G.Z.*, 2023. Using black soldier fly larvae (Hermetiaillucens) converted the bioflocs produced with shrimp solid waste. Aquaculture, 568: 739329. Luo G.Z. Review of waste phosphorus from aquaculture: Source, removal and recovery. Review in Aquaculture 1-25. doi:10.1111/raq.12727
[3] Luo G.Z*, Xu J.X., Li J.Y., Zheng H.W., Tan H.X, Liu W., 2022. Rapid production bioflocs by inoculation and fertilized with different nitrogen and carbon sources. Aquacultural Engineering 98:102262
[4] Abakari G, Wu X, He X, Fan L, Luo G.Z*, 2022. Bacteria in biofloc technology aquaculture systems: roles and mediating factors. Reviews in Aquaculture. DOI: 10.1111/raq.12649.
[5] Abakari G, Luo G.Z*, Shao L.N, Abdullateef Y, Cobbina S.J, 2021. Effects of biochar on microbial community in bioflocs and gut of Oreochromis niloticus reared in a biofloc system. Aquaculture International. https://doi.org/10.1007/s10499-021-00697-3.
[6] Abakari G, Luo G.Z*, Meng H.Y, Yang Z, Owusu-Afriyie G, Kombat E.O, Alhassan E.H, 2020. The use of biochar in the production of tilapia (Oreochromis niloticus) in a biofloc technology system – BFT. Aquacultural Engineering 91, 102123. https://doi.org/10.1016/j.aquaeng.2020.102123
[7] Abakari G, Luo G.Z*, Kombat E.O, Alhassan E.H, 2020. Supplemental Carbon Sources Applied in Biofloc Technology (BFT) Aquaculture Systems: Types, Effects and Future Research. Reviews in Aquaculture. DOI:10.1111/raq.12520.
[8] Cao B, Abakari G, Luo G.Z*, Tan H.X, Wu X, 2020. Comparative analysis of nitrogen and phosphorus budgets in a bioflocs aquaculture system and recirculation aquaculture system during over-wintering of tilapia (GIFT, Oreochromis niloticus). Aquacultural Engineering 89, 101026. https://doi.org/10.1016/j.aquaeng.2019.102026.
[9] Luo G.Z*, Xu J, Meng H, 2020. Nitrate accumulation in biofloc aquaculture systems. Aquaculture, 520. 734675. https://doi.org/10.1016/j.aquaculture.2019.734675.
[10] Chen X.Q, Luo G.Z.*, Tan J.H., Tan H.X., Yao M.L., 2020. Effects of carbohydrate supply strategies and biofloc concentrations on the growth performance of African catfish (Clarias gariepinus) cultured in biofloc systems. Aquaculture 517:734808. https://doi.org/10.1016/j.aquaculture.2019.734808.
[11] Luo G.Z.*, Chen X.Q., Tan J.H., Abakari G., Tan H.X., 2020. Effects of carbohydrate addition strategy and biofloc levels on the establishment of nitrification in biofloc technology aquaculture systems. Aquaculture 514, 734441. https://doi.org/10.1016/j.aquaculture.2019.734441.
[12] Chen X.Q., Luo G.Z.*, Meng H.Y., Tan H.X., 2019. Effect of the particle size on the ammonia removal rate and the bacterial community composition of bioflocs. Aquacultural Engineering 86, 102001.https://doi.org/10.1016/j.aquaeng.2019.102001.
[13] Luo G.Z.*, Hou Z.W., Tian, L.Q., Tan, H.X., 2020. Comparison of nitrate-removal efficiency and bacterial properties using PCL and PHBV polymers as a carbon source to treat aquaculture water. Aquaculture and Fisheries 5(2): 92-98. https://doi.org/10.1016/j.aaf.2019.04.002.
[14] Luo G.Z.*, Liu Z.F., Shao L.N., Tan, H.X., 2019. Using poly-β-hydroxybutyric as an additional carbohydrate for biofloc in a shrimp Litopenaeus vannamei bioflocs nursery system with brackish water. Aquaculture 506: 181-187. https://doi.org/10.1016/j.aquaculture.2019.03.021.
[15] Luo G.Z.*, Liu Z.F., Gao J.F., Hou Z.W., Tan H.X., 2018. Nitrate removal efficiency and bacterial community of polycaprolactone-packed bioreactors treating water from a recirculating aquaculture system. Aquaculture International 26:773–784. https://doi.org/10.1007/s10499-018-0251-5
[16] Luo G.Z.*, Hou Z.W., Gao J.F., Chen X.Q., Tan H.X., Fan L.P., 2018. Performance of polycaprolactone-based heterotrophic denitrification for recirculating aquaculture systems with varying hydraulic retention times. Desalination and Water Treatment doi:10.5004/dwt.2018.22253
[17] Luo G.Z*, Zhang N, Cai S.L, Tan H.X, Liu Z.F, 2017. Nitrogen dynamics, bacterial community composition and biofloc quality in biofloc-based systems cultured Oreochromis niloticus with poly-β-hydroxybutyric and polycaprolactone as external carbohydrates. Aquaculture 479: 732-741.
[18] Luo G.Z*, Li W.Q,Tan H.X, Chen X.Q, 2017. Comparing salinities of 0, 10 and 20 in biofloc genetically improved farmed tilapia (Oreochromis niloticus) production systems. Aquaculture and Fisheries 2:220-226.
[19] Luo G.Z.*, Zhang N., Tan H.X., Hou Z.W., Liu W.C., 2017. Efficiency of producing bioflocs with aquaculture waste by using poly--hydroxybutyric acid as a carbon source in suspended growth bioreactors. Aquacultural Engineering 76:36-40.
[20] Zhang N., Luo G.Z.*, Tan H.X., Liu W.C., Hou Z.W., 2016. Growth, digestive enzyme activity and welfare of tilapia (Oreochromis niloticus) reared in a biofloc-based system with poly-β-hydroxybutyric as a carbon source. Aquaculture 264:710-717.
[21] Luo G.Z.*, Xu G.M., Tan H.X., Gao J.F., Liu W.C., 2016.Effect of dissolved oxygen on denitrification using polycaprolactone as both the organic carbon source and the biofilm carrier. International Biodeterioration & Biodegradation 110:155-162.
[22] Luo G.Z.*, Xu G.M., Gao J.F., Tan H.X., 2016. Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors. Journal of Environmental Science 43:147-152.
[23] Luo G.Z.*, Yao M.L., Tan H.X., Wu W.H., 2016.The performance of microbial flocs produced with aquaculture waste as food for Artemia. Aquaculture Nutrition DOI: 10.1111/anu.12519.
[24] Luo G.Z.*, Wang J., Ma N.N., Liu X.F., Tan H.X., 2016. Effects of Inoculated Bacillus subtilis on Geosmin and 2-Methylisoborneol Removal in Suspended Growth Reactors Using Aquacultural Waste for Biofloc Production. Journal Microbiology Biotechnology 26: 1–8.
[25] Ma N.N., Luo G.Z.*, Tan H.X., Li L., Wang X.Y., 2015. Removal of Geosmin and 2-Methylisoborneol by Bioflocs Produced with Aquaculture Waste. Aquaculture International DOI 10.1007/s10499-015-9929-0
[26] Luo G.Z*., Gao Q., Wang C.H., Liu W.C., Sun D.C., Li L., Tan H.X., 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system, Aquaculture 42:1-7.
[27] Liang W.Y., Luo G.Z.*, Tan H.X., Ma N.N., Zhang N., Li L., 2014. Efficiency of biofloc technology in suspended growth reactors treating aquacultural solid under intermittent Aeration. Aquacultural Engineering 59:41-47.
[28] Luo G.Z.*, Liang W.Y., Tan H.X., Yao Y., Zhang N., Lu L., 2013. Effects of calcium and magnesium addition on the start-up of sequencing batch reactor using biofloc technology treating solid aquaculture waste. Aquacultural Engineering 57: 32-37.
[29] Yao Y., Tan H.X., Luo G.Z.*, Li L., 2013. Effects of Temperature on Inorganic Nitrogen Dynamics in Sequencing Batch Reactors using Biofloc Technology to Treat Aquaculture Sludge. North American Journal of Aquaculture 75:463-467.
[30] Luo G.Z., Avnimelech Y., Pan Y.F., Tan H.X., 2013. Inorganic nitrogen dynamics in sequencing batch reactors using biofloc technology to treat aquaculture sludge. Aquacultural Engineering 52:73-79.
[31] Luo G.Z.*, Li P., Tan H.X., Du J., Liang W.Y., 2013. The start-up and saline adaptation of mesophilic anaerobic sequencing batch reactor treating sludge from recirculating aquaculture systems. Aquacultural Engineering 54:9-15.
[32] Luo G.Z., Li L., Liu Q., Xu G.M., Tan H.X., 2014. Effect of dissolved oxygen on heterotrophic denitrification using poly(butylene succinate) as the carbon source and biofilm carrier. Bioresource Technology 17:152-158.
[33] Luo G.Z.*, Liu G., Tan H.X., 2013. Effects of stocking density and food deprivation-related stress on the physiology and growth in adult Scortum barcoo (McCulloch & Waite). Aquaculture Research 44:885-894.
[34] Lu L., Tan H., Luo G.Z.*, Liang W.Y., 2012. The effects of Bacillus subtilis on nitrogen recycling from aquaculture solid waste using heterotrophic nitrogen assimilation in sequencing batch reactors. Bioresource Technology 124:180-185.
[35] Luo G.Z.*, Zhang N., Tan H.X., 2012. Effect of Low Salinity on Jade Perch Scortum barcoo Performance in a Recirculating Aquaculture System. North American Journal of Aquaculture 74(3):395-399.
[36] Liu G., Tan H.X., Luo G.Z., Sun D.C., 2010. Effect of density on Scortum barcoo (McCulloch & Waite) juvenile performance in circular tanks. Aquaculture Research. 41: 1898-1904
申请和授权发明专利情况:
[1] 一种鱼虾菜养殖系统及养殖方法,ZL201910226601.7,第1发明人。
[2] 一种罗非鱼高产养殖方法,ZL201510830279.0,第1发明人。
[3] 一种促进生物絮凝过程建立的方法,ZL201610993285.2,第1发明人。
[4] 一种低成本低刺激生物絮凝养殖方法,ZL201711323657.1,第1发明人。
[5] 一种生物絮凝-水产养殖水体中碱度的补充方法,Zl201910226604.0,第1发明人。
[6] 一种高效凡纳滨对虾养殖方法,ZL201610890289.8,第1发明人。
[7] 一种循环水养殖系统,ZL2010102319013,第1发明人。
[8] 利用生物絮凝体悬浮液孵化卤虫的方法,ZL1025103540290,第1发明人。
[9] 一种跑道式生物絮凝养虾方式,ZL201410090584.6,第1发明人。
[10] 利用生物絮凝体悬浮液孵化卤虫的方法, ZL2012103540290, 第1发明人。
[11] 一种去除封闭式水产养殖水体中土腥味的方法, ZL2013102508292, 第1发明人。
[12] 一种封闭式水产养殖苗种培育系统, ZL2014100905846,第1发明人。
科教工作获奖情况:
[1] 2021年度农业部优秀创新团队:新葡萄8883官网AMG淡水水产动物种质资源创新团队。(排名5)
[2] 2020年度国家一流虚拟仿真课程:循环水养殖系统构建虚拟仿真实验(排名1)
[3] 2021年度上海市示范性全英语课程:《Aquaculture Engineering》(排名1)
[4] 2006年度上海市科技进步一等奖:循环水工厂化淡水鱼类养殖系统关键技术研究与开发(排名4)
[5] 2006年度中国国际工业博览会“最具技术交易潜力奖”:高密度循环水养殖系统(排名2)
[6] 2009年度中国技术交易协会“金桥奖”:循环水工厂化水产养殖系统工艺设计与应用研究(排名2)
联系方式
地址:上海市沪城环路999号
电话:021-61900413
E-mail:gzhluo@shou.edu.cn